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By the methods of the thermodynamics of irreversible processes and molecular- 
kinetic theory, it is shown that the effective thermal conductivities of mix- 
tures measured by steady and nonsteady methods are not equal, which is con- 
firmed by experimental data. 

A nonsteady heat-transfer process in diffusing systems is understood to entail specific 
experimental conditions, in which a pressure gradient Vp ~ VT of sufficiently large relax- 
ation time appears in measuring cells of small dimension; a density gradient arises in the 
shock tube, and the pressure remains practically constant in the course of the experiment. 

In the first case, the effective thermal conductivity includes contributions due to the 
concentration and pressure gradients, and in the second case, due to the concentration and 
density gradients. 

Conductive heat transfer in diffusing systems is characterized by three different forms 
of the thermal conductivity: the thermal conductivity of a homogeneously mixed mixture %o, 
the effective thermal conductivity in the steady state %~, and the effective thermal conduc- 
tivity in the nonsteady state IN An expression is found for the effective thermal conduc- 
tivity of a mixture in the nonsteady state, regardless of the method adopted for its measure- 
ment. This involves the consideration of two methods of describing the nonsteady conductive 
heat transfer, based on the formalisms of molecular--kinetic theory and the thermodynamics 
of irreversible processes. 

The conductive heat transfer in gas mixtures is characterized by the relation [i] 

V 

,lq .... LovT-- p --- , 
!.=! I? : f l l {  

which for binary mixtures takes the form 

H JT~]m~m.i 

where 

tz2mimjDu ~ VT' kT =- n2nhmiD~" (2) 

According to Eq. (2), the form of the expression for the mass flux X N in the steady state 
must be known in order to determine Ji; use is made of the concept of the thermodiffusional 
ratio in the nonsteady state [2]--s = TOzi/OT!vp~o by analogy with the steady state--k~i = 
TOxjOT]vv=O. ~ 

Before passing to the different forms of the expression for the mass flux ~i used in 
molecular--kinetic theory and the thermodynamics of irreversible processes, an expression 
is found for s T , assuming for the sake of simplicity that the mixture is ideal. 

For the system of the mean-mass velocity (equation of state c~p = plAT), the following 
relation is valid: 

Institute of Applied Physics, Academy of Sciences of the Belorussian SSR, Minsk. In- 
stitute of Thermomechanics, Czechoslovak Academy of Sciences, Prague. Translated from Inzh- 
enerno-Fizicheskii Zhurnal, V01. 44, No. I, pp. 108-114, January, 1983. Original article 
submitted June i, 1982. 

0022-0841/83/4401-0091507.50 �9 1983 Plenum Publishing Corporation 91 



PVC~ + q V P  =ATvPl + A,~  

and hence 

d l n c ~  dlpp ( dln9, ) 
c) l~T + q - - - -  cl 5 1 . O ln T O ln T . 

Taking into account that 

T-0Ct-  - ( 01np, ) _ _ ~ , , , ,  
dY w~0 . . . . .  ST, C 1 1 " O l n T  

where T(ac:/3T) vp=o = -~T 

- = O l n p  
ST := kT @ Cl - -  , 

d!nT 

and analogously  for  the system of the  mean-numerical  v e l o c i t y  

(3a) 

0 Inp 
sT =/TT + x~ 

3 1 n T  (3b) 

The description of the process of nonsteady thermodiffusion in the thermodynamics of irre- 
** which is determined versible processes is associated both with the thermodynamic force Ai, 

by the expression A~ ~ V& @ &vlnp, for the mean-numerical-velocity system, and the thermo- 

dynamic force Y = V T , so that 

k T = - -  Y Ai v l n p  
_ =  S T - - -  X i - -  

v l n T  
and for the mean-mass velocity system 

= A~ V lnp 
k T = - -  T - -  s ~ - - c  i - -  

P V lnT 

The description of the process of nonsteady thermodiffusion in terms of moleculat'-kinetic 
theory is associated with the concentration-gradient vector di, which is expressed in terms 
of the thermodynamic force A i as follows: 

where Ai -- 

.-+ --~gr 

4 *  = A~ - - - -  

Ai , so that 
P 

kT= -- T 

9~ v lnp and di--7~i--  Pi v lnp, 
9 9 

vF § 
Hence, it is evident that the thermodiffusional ratio is determined by the ratio between 
two vectors: the concentration gradient and the temperature gradient. The latter expres- 
sion may be used to write the relation 

9~ ) v l n p  
s T =  k T +  X~ .... 

9 V In T (4) 

Equation (4) defines the thermodiffusional ratio in the nonsteady state, written in terms 
of molecular--kinetic theory. 

Passing now to the different forms of the expression for the mass flux (number of par- 
ticles), it will first be shown that the numerical flux of particles, defined as 

nDl~(VXl  @kTvln T), i s  n D l ~ x l v l n p ,  i . e . ,  t ha t  
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Since V In xi = V In (p~/p), 

V In xl 

V lnp 

it follows that 

k~ V lnT  
- - +  - I .  

x~ V lnp 

v l n x '  -- vlnp* 1 -  v tnp~ v l n T  

v l n p  v l n p  v l n T  v l n p  

1 =  ( 1 T  Oln*h ) v l n T  
O ln T v l n p  

from which Eq. (5) follows. 

Adopting the notation nD1~(Vxl ~ k~vln T) =If , 

where ~ : :  --  pDj~ (Vq + kT v l n  T). 

_ _  -- I -- 

it is found that 

7; :-}; + nD~.:x, v m ;  = o, 

%- -~ ;  +~D,.c, vl,;=o. 
Equations (6) follow from the relations 

7eT V In Y 
x~ V In p 

(5) 

(6a) 
(6b) 

--~ --~" -+~ ~T -.. ~ = k ~ p  o, d, ~ ~ ' : o ,  

and leads to the identity 

-+J1 - -  n2mlm'z D12 [VXl q- AT V In T -k (xl --- o, ,.'P)' V !n Pl = 0. 
P 

(7) 

Using Eq. (7), Eq. (2) takes the form 

s s + - -  ~pD12 o:,te~ = ~, 4- ~.DT :: } ' ~  , 

i.e., the description of nonsteady conductive heat transfer in terms of molecular--kinetic 
theory completely coincides with the description of steady conductive heat transfer. In 
connection with this, it is necessary, in the experimental determination of th~ thermal con- 
ductivity by a nonsteady method, to create conditions such that the mass flux Ji = 0, i.e., 
to create a "countervaling" pressure gradient. 

Determining the nonsteady conductive heat transfer by the methods of the thermodynamics 
of irreversible processes, the following expressions are written [3]: 

Jq = - -  ko V T - -  pqDT TA1; d 1 == - -  pc~.c2D~ --pqDnA1,  (8) 

and in  g e n e r a l  form f o r  an i d e a l  m i x t u r e  

.~ = AT ( __I Vq -}- V in "z)~!/ = PPt (Vq + q V 111 p). 
( 9 )  C1 

Taking account of Eq. (9), 

where ar = D~/D n. 

the system in Eq. (8) takes the form 

Jj=--kovT-- PD'2 a~ ( T v q  .= To W In p), 

- +  T 

J1 = --  polc2D1 V In T-pD~z (Vq+ClV  In p), 

(i0) 

The first relation in Eq. (i0) may be written in the form 

where 
Jq = __ }~oV T - -  _ _  

pDlo., 
0% ( T v q  ~- TclV In p) = - -  }YV T, 

T 

[ ...., (TV.l v,..l] - - ~ T  -~- C1 - -  " ~N = ~o q- T , V T V In T , 
(ii) 
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Since  T vcl = ---sT, s~ = k S +  cl v l n p  pD12 
V T vp,=O v l n ~  . Eq. (ii) reduces to the form N = ~o aTk~-- %. 

T 

Thus, in the case when the total mass flux Ji (or the thermodynamic force Ai) is used 
to describe transfer processes, the effective thermal conductivity characterizing the non- 
steady conductive heat transfer %N is equal to the effective thermal conductivity %~. 

The process of nonsteady conductive heat transfer will be considered using the reduced 

mass flux ~i (which corresponds to the thermodynamic force ~z = A~ = ( 0~i I , [2]), 

For an ideal mixture 
~t --c T N 
Jq = - - > ~ o V T - - P ~ l l T D I v c l  = - - %  V T,  

where 

c~ V In p 
LN .= %0 -k A T o ~ .  T Vc~V T -- )~o - -  A T  c,.~s~ -- %= - -  X's k~ V In T 

Thus, when nonsteady transfer processes are described using the reduced mass flux (or 
->I 

the thermodynamic force Ai) , the thermal conductivities ~N and %~ are related as follows: 

%N=~=__cl~.oTk~-~ v l n p  ; %o7-- pDI~_ aT-kT" 
V In T T (12) 

For a nonideal mixture 

~ = A T  1 + Olnf~ Olnfi OT ' 

O ln c~ ~,p OT 91n cl , ~,p . R T  s~ i , ~,p ' 

where Hi =--RT201nfd0T. Taking this into account, for a nonideal mixture 

%N %o pD12 ( H1 
0~, ST~ ~- X 1 

Using the method of molecular--kinetic theory, it is found that 

xN ~o PD~ ( / - / 7 )  = ---- a T s + x, (13) 
T ~ -  ' 

since 

s~l ~- kT ~- In1 (v~ + v"~) 9,/P] 0 In p It~xl , (14) 
O ln T R T  

where 

~)~ = R T  0 111 [1 , V0 : 0 ~ 1 0  

Op Op 

Using Eq. ( 1 4 ) ,  Eq. (13) t a k e s  t h e  form 

KN---- %= - -  ~Dr k*~ I [xl (1 Jr v~n) - -  Pa/O] - -  v l n p  
v I n T  (15) 

Equations (12) and (15) define the effective thermal conductivity of systems in the non- 
steady state when their volume is practically unchanged. If the volume of the system is 
changed in the nonsteady process, while the pressure remains constant, the expression for 
the effective coefficient %N takes a form analogous in form to Eq. (12) 
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Fig. i. Dependence of the thermal conductivity of a helium--argon 
mixture on the temperature: i) measurement of the thermal conduc- 
tivity hy the steady heated-wire method [4]; 2) by the nonsteady 
shock-tube method [5]; a) 0.6 He--O.l Ar; b) 0.8 He-0.2 Ar; c) 0.5 
He-0.5 Ar; d) 0.i He--0.9 Ar. 

z N =  Z~ -- c12~T~  I V I n P  (16)  
v l n  T 

Calculation of ~N by Eq. (16) shows that for a mixture of helium and argon with T = 1500~ 
%~ = 0.159 W/m.~ [4], xi~0.5 (c~ =0~091), ~ ~--0,0924 (calculation of [6]), VlnP/vlnT ...... i, 

--i V In___~p =0.004 and %N = 0.155 W/m'~ Experimental determination of the thermal con- Cl~DTk~ v I n T  

ductivity of this mixture in a shock tube shows that ~N = 0.154 W/m.~ [5]. 

A comparison of the experimental data on the effective thermal conductivity of a helium- 
argon mixture measured by the steady heated-wire method [4] and the nonsteady shock-tube 
method [5] is shown in Fig. i. As in the case of single-component gases, the data obtained 
by the steady method (%~) are larger than the data obtained by the nonsteady method (zN), 

Thus, the discrepancy between the experimental data on the thermal conductivity of the 
heliunr-argon mixture obtained by the steady and nonsteady methods, as in the case of single- 
component gases, is associated with the contribution of the density gradient to the nonsteady 
heat-transfer process [7]. 

NOTATION 

Zo, thermal conductivity of a homogeneous mixture; zN effective thermal conductivity 
of the mixture measured by a nonsteady_method; %~, effective thermal conductivity of the 

T ~ 
mixture measured by a steady method; Di, thermodiffusion coefficient; ST, kT, thermodiffu- 
sional ratio; Dij , mutual diffusion coefficient; T, temperature; p, mixture density; Pi' 
density of the i-th componen+t; p, pressure;§ numerical density; m, mass; xi, molar frac- 
tion of the i-th component; Ji, mass flux; lj, flux of the number of particles; ~!, reduced 
heat flux; A, gas constant; v~, mixing volume; ~i, chemical potential; fi, activity coeffi- 

cient of the i-th component; Hi, heat of mixing of the i-th component. 
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CONSTRUCTING A SINGLE EQUATION OF STATE FOR GAS AND LIQUID BY THE METHOD 

OF MINIMIZING THE SUM OF SQUARES OF THE RELATIVE DEVIATIONS 

B. A. Grigor'ev, S. A. Plotnikov, 
and D. S. Kurumov 

UDC 536.71:519.281.2 

The use of the sum of Squares of the relative deviations as the minimization 
criterion in the scheme of the least-squares method is proposed for the con- 

struction of a single thermal equation of state. 

A typological scheme for the comparison of tables of thermodynamical properties from 
experimental data must precede the stage of constructing the thermal equation of state on 
the basis of statistical treatment of compatible measurements and the subsequent calculation 
of thermodynamic functions from the resulting equation. Two approaches are possible [i]: 

i. Only experimental P, v, T data are used to determine the constants of the thermal 
equation of state. Information on the other properties is taken into account indirectly in 
choosing the version of the equation of state optimal from the viewpoint of the simultaneous 
description of the thermal, caloric, and acoustic properties. 

2. The empirical constants of the equation are determined on the basis of combined 
analysis of the various kinds of experimental data. 

In both cases, the problem of determining the constants of the empirical equation of 
state reduces to the application of the generalized least-squares method. From a mathemat- 
ical viewpoint, the problem consists in minimization of the quadratic functional 

Q nq 

q==:l h = l  

I n  t h e  f i r s t  c a s e ,  Q = 1 ,  x = z .  I n  t h e  s e c o n d ,  x q : { z ,  h, c . . . . .  }. 

The l e a s t - s q u a r e s  m e t h o d  (LSM) i n  Eq.  (1 )  c o n s i s t s  i n  m i n i m i z i n g  t h e  sum o f  s q u a r e s  
o f  t h e  a b s o l u t e  d e v i a t i o n s .  I n  g e n e r a l  f o r m ,  f o r  

P = x~ + ~ (2) 

the problem reduces to minimization of the quantity 

e~ ~= ( Y - -  Xb)'(Y --  Xb). (3 )  

However, the quality criterion of the equation obtained by the method is not absolute, 
as a rule, but the relative mean-square deviation 

N 

~. sq = ~ ((Yexp~- g oalc~)/Ue• ~- M-- I) (4) 

The values of the coefficients giving a minimum Of the functional of the absolute and rela- 
tive deviations do not necessarily coincide here [2]. In connection with this, the possi- 
bility of using the sum of squares of the relative deviations as the minimization criteria 
in the LSM scheme is investigated in the present work. In matrix form, the relative-devia- 
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